首页> 外文OA文献 >First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS
【2h】

First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS

机译:各向异性热电输运的第一性原理研究   IV-VI半导体化合物snse和sns的性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We conduct comprehensive investigations of both thermal and electricaltransport properties of SnSe and SnS using first-principles calculationscombined with the Boltzmann transport theory. Due to the distinct layeredlattice structure, SnSe and SnS exhibit similarly anisotropic thermal andelectrical behaviors. The cross-plane lattice thermal conductivity $\kappa_{L}$is 40-60% lower than the in-plane values. Extremely low $\kappa_{L}$ is foundfor both materials because of high anharmonicity. It is suggested thatnanostructuring would be difficult to further decrease $\kappa_{L}$ because ofthe short mean free paths of dominant phonon modes (1-30 nm at 300 K) whilealloying would be efficient in reducing $\kappa_{L}$ considering that therelative $\kappa_{L}$ contribution ($\sim$ 65%) of optical phonons isremarkably large. On the electrical side, the anisotropic electricalconductivities are mainly due to the different effective masses of holes andelectrons along the $a$, $b$ and $c$ axes. This leads to the highest optimal$ZT$ values along the $b$ axis and lowest ones along the $a$ axis in both$p$-type materials. However, the $n$-type ones exhibit the highest $ZT$s alongthe $a$ axis due to the enhancement of power factor when the chemical potentialgradually approaches the secondary band valley that causes significant increasein electron mobility and density of states. SnSe exhibits larger optimal $ZT$scompared with SnS in both $p$-type and $n$-type materials. For both materials,the peak $ZT$s of $n$-type materials are much higher than those of $p$-typeones along the same direction. The predicted highest $ZT$ values at 750 K are1.0 in SnSe and 0.6 in SnS along the $b$ axis for the $p$-type doping whilethose for the $n$-type doping reach 2.7 in SnSe and 1.5 in SnS along the $a$axis, rendering them among the best bulk thermoelectric materials forlarge-scale applications.
机译:我们结合第一性原理计算和玻尔兹曼输运理论对SnSe和SnS的热和电输运性质进行了全面研究。由于独特的分层晶格结构,SnSe和SnS表现出相似的各向异性热和电行为。跨面晶格热导率$ \ kappa_ {L} $比面内值低40-60%。由于高非谐性,两种材料的\\ kappa_ {L} $极低。有人建议,由于主要声子模的平均自由程较短(在300 K时为1-30 nm),纳米结构将难以进一步降低$ \ kappa_ {L} $,而考虑到合金化将有效降低$ \ kappa_ {L} $光学声子的相对$ \ kappa_ {L} $贡献($ \ sim $ 65%)非常大。在电方面,各向异性电导率主要是由于沿$ a $,$ b $和$ c $轴的空穴和电子的有效质量不同。这会导致在两种$ p $类型的材料中,沿$ b $轴的最佳$ ZT $值最高,沿$ a $轴的最低值。然而,由于当化学势逐渐接近导致电子迁移率和态密度显着增加的次级能带谷时功率因数的提高,n $型的n沿$ a $轴表现出最高的ZT $ s。 SnSe在$ p $型和$ n $型材料中均显示出比SnS更大的最佳$ ZT $。对于这两种材料,在相同方向上,$ n $型材料的峰值$ ZT $ s远高于$ p $型材料的峰值。沿$ b $轴,在750 K处预测的最高$ ZT $值沿$ b $轴方向为$ p $型掺杂,而对于$ n $型掺杂,SnSe中为0.6,SnS中为1.5。沿着$ a $轴,使它们成为用于大型应用的最佳块状热电材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号